高脉冲稳定性的 100 kHz 皮秒再生放大器

黄玉涛1,2,3 樊仲维1,3* 牛 岗3 闫 莹1,3 王小发1,2,3 黄 科1 连富强1,2,3 余 锦1

¹中国科学院光电研究院,北京 100094 ²中国科学院研究生院,北京 100049

³北京国科世纪激光技术有限公司,北京 100192

摘要 报道了一种具有高脉冲稳定性的 100 kHz 皮秒脉冲再生放大装置。该放大装置采用激光二极管(LD)端面抽运的 Nd: YVO₄晶体作为增益介质,RTP 晶体作为电光晶体。再生腔的腔型为对称 W型,总长 1.8 m。分析了皮秒脉冲在再生放大腔中往返次数和再生腔损耗对放大脉冲倍周期分叉现象以及稳定放大时输出功率的影响。抽运功率为 30 W时,通过选取最优的往返次数获得了功率为 5.3 W 的高脉冲稳定性的再生输出,脉冲稳定性均方根(RMS)值小于 2%。放大后皮秒脉冲脉宽为 13.78 ps,脉冲峰值功率 3.84 MW,再生腔输出的光束质量因子 M²≪1.5。

关键词 激光技术;再生放大;100 kHz;皮秒脉冲;倍周期分叉现象

中图分类号 TN248.1 文献标识码 A doi: 10.3788/CJL201239.0502009

100 kHz Repetition Rate Picosecond Regenerative Amplifier with High Pulse Stability

Huang Yutao^{1,2,3} Fan Zhongwei^{1,3} Niu Gang³ Yan Ying^{1,3} Wang Xiaofa^{1,2,3} Huang Ke^{1,2,3} Lian Fuqiang^{1,2,3} Yu Jin¹

¹Academy of Opto-Electronics, Chinese Acdemy of Sciences, Beijing 100094, China ²Graduate University of Chinese Academy of Sciences, Beijing 100049, China ³Beijing GK Laser Technology Co., Ltd, Beijing 100192, China

Abstract A laser diode-pumped picosecond Nd: YVO₄ regenerative amplifier system is reported, which produces high stable pulses at 100 kHz repetition rate. RTP crystal is chosen as electro-optical switches to control the output of regenerative amplifier. The amplifier is a symmetrical W type resonator with 1.8 m total length. The effects of round trips number and cavity losses on period doubling bifurcation and maximum output power are analyzed. When pump power is 30 W, the amplifier provides the output power of 5.3 W with pulse stability root mean square (RMS) is less than 2% by choosing the optimal round trips number. The amplified pulse has a pulse duration of 13.78 ps, a peak power of 3.84 MW. The beam quality factor M^2 after amplification is less than or equal to 1.5. **Key words** laser technique; regenerative amplification; 100 kHz; picosecond pulse; period doubling bifurcation

OCIS codes 140.4050; 140.3280; 320.7120

1 引 言

近几年来以超短激光脉冲为代表的精细加工已 经成为激光加工领域的热点,引起了人们的广泛关 注。理论分析和实验说明,脉冲宽度为 10 ps 左右 的激光脉冲能满足许多精细加工的要求^[1~3],加工 效果可以同飞秒激光加工相媲美,同时可避免飞秒 激光在靶标前面的空气中发生的等离子体效应和由 此引起的光束变形和散射。为了满足材料加工时所 需的脉冲能量和加工速度,皮秒激光器需采用高重 复频率的再生放大技术。国外相继报道了对高重复

基金项目:国家科技部国际合作(2010DFR50650)和中国科学院科研装备研制项目(Y2010008)资助课题。

作者简介:黄玉涛(1988—),男,硕士研究生,主要从事全固态皮秒激光器方面的研究。E-mail: yutaohuang@126.com

收稿日期: 2011-12-05; 收到修改稿日期: 2012-02-13

导师简介: 樊仲维(1964—),男,研究员,博士生导师,主要从事全固态皮秒激光器及大型复杂全固态激光器等方面的研究。E-mail: fanzw002@163.com(通信联系人)

频率皮秒再生放大技术的研究^[4~6],但国内的研究^[7~11]主要集中在皮秒锁模振荡器和低重复频率 的皮秒再生放大技术上,对高重复频率皮秒再生放 大技术的研究较少。

高重复频率再生放大器采用连续抽运,放大脉 冲之间的抽运时间已远小于增益晶体的增益弛豫时 间,抽运没有足够的时间来恢复稳定的增益,破坏了 放大过程所消耗的反转粒子数和抽运阶段增加的反 转粒子数之间的平衡性,致使相邻再生放大脉冲之 间相互影响,出现放大脉冲的倍周期分叉现象。脉 冲倍周期分叉会导致放大脉冲能量不稳定和重复周 期加倍,影响精细加工的效果和速度,所以在高重复 频率再生放大中应尽量避免倍周期分叉现象的出 现。J. Dörring 等^[12]用速率方程理论解释并模拟 了镱玻璃高重复频率再生放大过程中倍周期分叉现 象,并分析了再生腔的参数对脉冲能量稳定性的影 响。M. Grishin 等^[13,14]通过理论模拟和实验验证 证实了种子的脉冲能量是影响倍周期分叉的重要因 素,在振荡器后加入放大级增加种子的脉冲能量可 以抑制高重复频率再生放大中的倍周期分叉,但这 势必会增加系统的复杂性和成本。

本文分析了脉冲在再生腔内往返次数和再生腔 损耗对倍周期分叉现象及稳定放大时最大输出功率 的影响,在抽运功率为 30 W 时,选择合适的振荡次 数,在对称 W 型再生腔中获得了平均功率为5.3 W, 重复频率为 100 kHz 的高稳定性皮秒脉冲。

2 实验装置

实验装置如图1所示,系统包括皮秒种子源和再 生放大器两部分。皮秒种子源是采用半导体可饱和 吸收镜(SESAM)被动锁模的 Nd: YVO4 皮秒振荡器, 振荡器运转在连续锁模状态,获得了重复频率为 80 MHz、功率为 200 mW、脉宽 13 ps 的皮秒脉冲输 出;产生的皮秒脉冲进入由偏振分光棱镜(PBS) $\lambda/2$ 波片、法拉第旋光器(FR)组成的光隔离系统(OII), OII 的作用是避免后续光路的光进入种子源,影响锁 模的稳定性:f 为匹配透镜,用于皮秒种子源与再生放 大腔的光束模式匹配,提高再生放大的提取效率;由 偏振片(TFP1)、磁光隔离器(FR)、波片组成的光隔离 系统(OI2)用于输出再生放大后的皮秒脉冲;再生放 大腔为对称的 W 型腔, M1、M2、M4、M5 为镀有 1064 nm高反膜的平凹镜,其中 M1 和 M2 的曲率半 径为 2 m, M4 和 M5 的曲率半径为 900 mm。M3 为 0°的二向色性反射镜,抽运光入射面镀 808 nm 增透 膜,另一面镀1064 nm高反膜和 808 nm 增透膜。M6、 M7、M8 为镀有1064 nm高反膜的 45°反射镜, $\lambda/4$ 为 四分之一波片, TFP2 为偏振片。再生腔总腔长 1.8 m,光在腔内往返一次的时间为 12 ns;再生腔增 益介质采用大小为4 mm×4 mm×10 mm掺杂原子 数分数为 0.3%的 Nd: YVO4 晶体,晶体两面均镀 808 nm和 1064 nm 增透膜。为减少晶体的热效应, 晶体用铟箔包裹放在水冷的紫铜块里,晶体紧贴 M5 镜放置:抽运源采用北京国科世纪激光有限公 司生产的 30 W 半导体激光器(LD),抽运光经聚焦 耦合系统后,耦合到增益介质中;电光晶体采用 RTP 晶体,它由两块4 mm×4 mm×10 mm 晶体组 成,其底面与光学平台水平面成45°放置,目两块晶 体加电方向正交,此方法可以补偿晶体的自然双折 射。晶体端面均镀 1064 nm 增透膜以减少插入损 耗。采用北京国科世纪激光有限公司研发的电光驱 动电源,重复频率为100 kHz,脉冲宽度调节范围为 0~255 ns,其上升沿和下降沿时间均小于4 ns。驱 动电源的高压盒可提供 800~1000 V 的高压。

图 1 Nd:YVO4再生放大系统 Fig. 1 Scheme of the Nd:YVO4 regenerative amplifier

3 倍周期分叉现象

当皮秒脉冲在放大阶段中提取过多的能量后, 就会导致在下一个抽运阶段中增益晶体的反转粒子 数得不到恢复,下一个皮秒脉冲不能从再生腔中提 取足够多的脉冲能量,产生倍周期分叉现象。图 2 为再生放大后的脉冲倍周期分叉现象。图 2(a)显 示再生放大后脉冲裂化为两个幅值不同的脉冲; 图 2(b)为放大后再生波形变为两个幅值不同的脉 冲交替出现,脉冲的重复周期加倍。

速率方程为

$$\frac{\mathrm{d}N}{\mathrm{d}t} = R_{\mathrm{p}} - \frac{\sigma c}{V} \phi N - \frac{N}{T_{\mathrm{1}}},\tag{1}$$

$$\frac{\mathrm{d}\phi}{\mathrm{d}t} = \left(\frac{\sigma c L_{a} A_{a}}{V} N - \frac{1}{T_{c}}\right)\phi, \qquad (2)$$

式中 R_p 为再生腔的抽运速率;c 为光速;σ 为增益介 质的受激发射截面;V 为再生腔的模式体积;T₁ 为 增益介质的上能级寿命;L_a 为增益介质的长度;A_a 为增益介质中光束的横截面积;T_c 为再生腔内的光 子寿命;t 为时间参数。由于放大阶段的持续时间 很短,可以忽略放大阶段抽运和自发辐射对反转粒 子数的影响,所以,(1)式可以简化为

$$\frac{\mathrm{d}N}{\mathrm{d}t} = -\frac{\sigma c}{V} \phi N, \qquad (3)$$

在(2)式和(3)式各参数中,对于确定的再生放 大腔结构和增益介质,再生腔的模式体积V、晶体中 光束横截面积 A_a 和增益介质的受激发射截面 σ 、上 能级寿命 T_1 、长度 L_a 是完全确定的。时间参数t和 光子寿命 T_c 是影响放大阶段反转粒子数密度N和 光子数 ϕ 的重要参数。所以,反应时间参数的种子 往返次数和决定光子寿命的再生腔损耗会对再生放 大的稳定性和脉冲能量的提取产生重要的影响。

在抽运功率为 30 W,再生腔固有损耗为 0.107 情况下,往返次数对再生放大后脉冲能量和功率的 影响如图 3 所示。往返次数在 2~11 范围内,再生 腔稳定放大,输出脉冲的能量单一稳定,再生腔增益 大于损耗,脉冲能量和平均功率都呈上升趋势;在往 返次数大于 11 后,脉冲能量开始分裂,出现倍周期 分叉现象。由于脉冲重复频率为 100 kHz,不能通 过能量计进行直接测量,利用工作在非饱和条件下 光电探测器响应的脉冲幅值与脉冲能量呈线性关 系,根据示波器上显示的脉冲高度来间接确定脉冲 能量。随着往返次数的增加,高能量脉冲对低能量 脉冲的影响越来越大,两者的能量差值也越来越大, 但总体来说腔内增益仍大于损耗,功率继续上升。 直至往返次数为15时,功率到达最大值6.06W。 能量较高的脉冲增益开始小于损耗,脉冲能量开始 下降,低能量脉冲增益仍大于腔内损耗,能量开始上 升,再生腔输出功率开始下降。所以,往返次数为 11 是最优值,此时放大后的脉冲能量单一稳定且最 大,再生腔输出单脉冲能量为53 µJ,功率为5.3W。

图 3 脉冲能量和功率随往返次数的变化曲线 Fig. 3 Pulse energy and average power versus number of cavity round trips

在再生腔腔镜 M5 前插入一个 λ/4 波片,λ/4 波 片和偏振片 TFP2 组成一个可调输出镜,通过旋转 波片角度可以增大再生腔的损耗。不同损耗下,再 生腔稳定放大时的最优往返次数和最大输出功率的 表1 不同损耗下再生腔稳定放大时的最优往返次数和

最大输出功率的变化情况

Table 1 Maximum power and optimal round trip number after stable regenerative amplification for different cavity losses

Cavity loss	Number of cavity round trip	Maximum power /W
0.107	11	5.3
0.128	11	5.1
0.174	11	4.5

变化情况如表1所示。增大再生腔的损耗没有影响 最优的往返次数,但减少了再生腔稳定放大时输出 的最大功率。所以,为了提升稳定再生放大时的输 出功率,应减少再生腔的损耗。

4 实验结果及分析

在 30 W 抽运下,再生腔固有损耗为 0.107,脉

冲往返次数为11次时,再生腔稳定放大时的最大单 脉冲能量为53μJ,此时,再生腔稳定放大后的脉冲 波形如图4所示。图4(a)为单个再生放大脉冲的 波形图,再生放大后主从脉冲比可达200:1,脉冲的 稳定性均方根(RMS)值小于2%;图4(b)为再生放 大后多个脉冲的波形图,可看出再生放大后的脉冲 非常稳定,无漏脉冲和脉冲幅值分裂现象。

图 4 再生腔稳定放大时输出脉冲的波形图。(a)单个再生放大后脉冲的波形图;(b)再生放大后多个脉冲的波形图 Fig. 4 Screenshots of picosecond pulses after stable regenerative amplification. (a) Single stable pulse after regenerative amplification;(b) multiple pulses after regenerative amplification

图 5 为放大前后皮秒脉冲的时间特性和光谱特性。图 5(a)为再生放大前皮秒脉冲的自相关曲线,

自相关曲线为高斯型,脉冲宽度为13 ps;图5(b)为 再生放大后脉冲的自相关曲线,自相关曲线为高斯

Fig. 5 Intensity autocorrelation trace and optical spectra of the injected and amplified laser pulses. (a) Intensity autocorrelation trace of the injected pulses; (b) intensity autocorrelation trace of the amplified pulses; (c) optical spectrum of the injected pulses; (d) optical spectrum of the amplified pulses 型,说明放大后脉冲中无直流成分和调Q脉冲出现,测得脉冲宽度为13.78 ps,脉冲的峰值功率为3.84 MW;图5(c)为放大前皮秒脉冲的光谱特性,中心波长1064.04 nm,光谱宽度为0.192 nm。由于再生放大过程中的频率迁移,放大后脉冲的中心波长漂移到1064.355 nm,光谱宽度为0.174 nm,如图5(d)所示。

再生后的激光近基模输出,经测量光束质量因 子 M² ≪1.5,其远场的光斑模式如图 6 所示。

图 6 再生放大后激光的光斑模式 Fig. 6 Spatial profile after stable regenerative amplification

5 结 论

介绍了一种采用 LD 端面抽运 Nd: YVO4 晶体 的高重复频率皮秒脉冲再生放大装置,再生腔用 RTP 晶体作为电光晶体进行皮秒脉冲选单。通过 选择合适的往返次数,获得了 5.3 W 稳定的再生放 大脉冲,再生后稳定的皮秒脉冲脉宽为 13.78 ps,峰 值功率为3.84 MW,重复频率为 100 kHz 的,脉冲 能量稳定性均方根值小于 2%,再生腔空间光束质 量小于等于 1.5。该再生放大系统已应用到实际激 光产品中,系统的稳定性可靠性完全满足产品化 要求。

参考文献

 M. Kraus, S. Collmer, S. Sommer *et al.*. Microdrilling in steel with frequency-doubled ultrashort pulsed laser radiation[J]. *J. Laser Micro/Nanoengineering*, 2008, **3**(3): 129~134

- 2 H. K. Tönshoff, F. von Alvensleben, A. Ostendorf *et al.*. Micromachining of metals using ultrashort laser pulses [J]. J. Laser Applications, 2000, **12**(1): 23~27
- 3 H. K. Tönshoff, A. Ostendorf, C. Kulik *et al.*. Finishing of cutting tools using selective material ablation[C]. Copenhagen: Proceedings of 1st International CIRP Seminar on Micro and Nano Technology, 2003
- 4 J. Kleinbauer, R. Knappe, R. Wallenstein. 13-W picosecond Nd: GdVO₄ regenerative amplifier with 200-kHz repetition rate [J]. Appl. Phys. B, 2005, 81(2-3): 163~166
- 5 M. Siebold, M. Hornung, J. Hein *et al.*. A high-average-power diode-pumped Nd : YVO₄ regenerative laser amplifier for picosecond-pulses[J]. *Appl. Phys. B*, 2004, **78**(3-4): 287~290
- 6 J. Kleinbauer, R. Knappe, R Wallenstein *et al.*. A powerful diode-pumped laser source for micro-machining with ps pulses in the infrared, the visible and the ultraviolet[J]. *Appl. Phys. B*, 2005, **80**(3): 315~320
- 7 Fu Jie, Pang Qingsheng, Chang Liang et al.. Research on cavitydumping mode-locked laser of picosecond at 10 kHz[J]. Acta Optica Sinica, 2011, 31(3): 0314002

付 洁, 庞庆生, 常 亮 等. 10 kHz 腔倒空锁模皮秒激光器研 究[J]. 光学学报, 2011, **31**(3): 0314002

8 Wang Jiangfeng, Zhu Haidong, Li Xuechun *et al.*. Highly stable laser diode-pumped Nd: YLF regenerative amplifier[J]. *Chinese J. Lasers*, 2008, **35**(2): 187~190 工工体 生版在 本兴年年 直路完就来一起德地运 Nd: VLF

王江峰,朱海东,李学春等.高稳定激光二极管抽运 Nd:YLF 再生放大器[J].中国激光,2008,**35**(2):187~190

- 9 Chang Liang, Chen Meng, Li Gang et al.. Thermal characteristic analysis of laser diode side-pumped regenerative amplifier for kHz picosecond laser[J]. Chinese J. Lasers, 2010, 37(3): 873~876 常亮,陈 檬,李 港等. 激光二极管侧面抽运千赫兹皮秒激光再生放大器的热特性[J]. 中国激光, 2010, 37(3): 873~876
- 10 Yan Ying, Fan Zhongwei, Niu Gang *et al.*. Laser diode endpumped kilohertz Nd: YVO₄ picosecond regenerative amplifeir [J]. Laser & Optoelectronics Progress, 2012, 49(2): 021402
 闫 莹,樊仲维,牛 岗等.激光二极管千赫兹级 Nd: YVO₄皮 秒脉冲激光再生放大器[J].激光与光电子学进展, 2012, 49(2): 021402
- 11 Ma Yunfeng, Fan Zhongwei, Niu Gang *et al.*, 2.5 W picosecond pulse regenerative amplifier with 100 kHz repetition rate[J]. *Chinese J. Lasers*, 2010, **37**(11): 2825~2828 麻云凤,樊仲维,牛 岗等. 重复频率 100 kHz,平均功率 2.5 W的皮秒脉冲再生放大器[J]. 中国激光, 2010, **37**(11): 2825~2828
- 12 J. Dörring, A. Killi, U. Morgner *et al.*. Period doubling and deterministic chaos in continuously pumped regenerative amplifiers[J]. *Opt. Express*, 2004, **12**(8): 1759~1768
- 13 M. Grishin, V. Gulbinas, A. Michailovas. Bifurcation suppression for stability improvement in Nd: YVO₄ regenerative amplifier[J]. Opt. Express, 2009, 17(18): 15700~15708
- 14 M. Grishin, V. Gulbinas, A. Michailovas. Dynamics of high repetition rate regenerative amplifiers[J]. Opt. Express, 2007, 15(15): 9434~9443

栏目编辑:宋梅梅